tiple complexes are formed, and that complexed species containing all-trans or one-cis peptide bonds exist simultaneously for certain ranges of cation concentration. A mechanism of binding which accounts for the observations in terms of two different 1:1 complexes (PCcis and PCtrans) and one 1:2 complex (PC_2) with all-trans peptide bonds was proposed.

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. In addition, we acknowledge the support of the National Science Foundation and the Research Corporation in the acquisition of the JEOL FX60 and FX100 NMR instruments. Mass spectral data were obtained from the Biotechnology Research Resource (sponsored by the National Institutes of Health), and 270-MHz ¹H NMR spectra with the Bruker HX270 at the Francis Bitter National Magnet Laboratory, both of which are located at the Massachusetts Institute of Technology. We also express thanks to Mr. Craig Leonardi for his capable technical assistance.

References and Notes

- (1) A preliminary account of this work was presented at the Fifth American Peptide Symposium, La Jolla, Calif., June 1977. (Symposium Proceedings in press.)
- V. Madison, M. Atreyi, C. M. Deber, and E. R. Blout, J. Am. Chem. Soc., 96, 6725 (1974)
- (3) V. Madison, C. M. Deber, and E. R. Blout, J. Am. Chem. Soc., 99, 4788 (1977)
- (4) E. R. Blout, C. M. Deber, and L. G. Pease, in "Peptides, Polypeptides and Proteins", E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, Ed., Wiley, New York, N.Y., 1974, p 266.
- (5) L. G. Pease, C. M. Deber, and E. R. Blout, J. Am. Chem. Soc., 95, 258 (1973).
- (6) D. A. Torchia, A. di Corato, S. C. K. Wong, C. M. Deber, and E. R. Blout, *J. Am. Chem. Soc.*, **94**, 609 (1972). (7) D. A. Torchia, S. C. K. Wong, C. M. Deber, and E. R. Blout, *J. Am. Chem.*
- Soc., 94, 616 (1972). (8) K. D. Kopple, A. Go, T. J. Schamper, and C. S. Wilcox, J. Am. Chem. Soc.,
- 95, 6090 (1973).
- (9) K. D. Kopple, T. J. Schamper, and A. Go, J. Am. Chem. Soc., 96, 2597 (1974).

- (10) J. L. Crawford, W. N. Lipscomb, and C. G. Schellman, Proc. Natl. Acad. Sci. U.S.A., 70, 538 (1973).
- (11) B. W. Matthews, *Macromolecules*, 5, 818 (1972).
 (12) P. Y. Chou and G. D. Fasman, *Biochemistry*, 13, 222 (1974).
- (13) K. D. Kopple and A. Go, in "Peptides: Chemistry, Structure and Biology", R. Walter and J. Meienhofer, Ed., Ann Arbor Science Publishers, Ann Arbor, Mich., 1975, p. 139.
- (14) K. D. Kopple, A. Go, and D. R. Pilipauskas, J. Am. Chem. Soc., 97, 6830 (1975).
- (15) (a) R. Walter, I. Bernal, and L. F. Johnson, in "Chemistry and Biology of Peptides", J. Meienhofer, Ed., Ann Arbor, Mich., 1972, p. 131; (b) L. L. Reed and P. L. Johnson, *J. Am. Chem. Soc.*, **95**, 7523 (1973).
 (16) C. M. Venkatachalam, *Biopolymers*, **6**, 1425 (1968).
 (17) L. G. Pease, Ph.D. Thesis, Harvard University, Cambridge, Mass., 1975.
- (18) G. Nemethy and M. P. Printz, Macromolecules, 5, 755 (1972).
- (19) D. Demel and H. Kessler, Tetrahedron Lett., 2801 (1976).
- (20) I. Karle, J. Am. Chem. Soc., following paper in this issue
- (21) C.-H. Niu, V. Madison, L. G. Pease, and E. R. Blout, manuscript in preparation.
- B. F. Gisin and R. B. Merrifield, J. Am. Chem. Soc., 94, 6165 (1972) (22)
- (23) D. G. Davis, B. F. Gisin, and D. C. Tosteson, Biochemistry, 15, 768 (1976)(24) D. Baron, L. G. Pease, and E. R. Blout, J. Am. Chem. Soc., 99, 8299
- (1977)(25) C. M. Deber, V. Madison, and E. R. Blout, Acc. Chem. Res., 9, 106
- (1976).
- (26) (a) D. E. Dorman and F. A. Bovey, *J. Org. Chem.*, **38**, 2379 (1973); (b) I. C.
 P. Smith, R. Deslauriers, H. Saito, R. Walter, C. Garrigou-Lagrange, H.
 McGregor, and D. Sarantakis, *Ann. N.Y. Acad. Sci.*, **222**, 597 (1973).
- (27) An alternative explanation for the observation of a population of cis conformers of cyclo-(Gly-Pro-Gly-D-Ala-Pro) as salt is added is possible. Namely, the perturbation in the dielectric characteristics of the solvent as salt is added may affect the conformational energetics of the peptide. Indeed, a population of cis conformers was observed in water, a solvent of high dielectric. However, both the relation between the observed conformational interconversion and the stoichiometry of the salt titration, and the lack of any changes in CD spectra of the peptide for several other salts, lead the authors to prefer the explanation presented herein.
- (28) For an explanation of conventions used In dihedral angle nomenclature, see: Biochemistry, 9, 3471 (1970).
- (29) V. F. Bystrov, S. L. Portnova, T. A. Balashova, S. A. Koz'min, Yu. D. Gavrilov, and V. A. Afanas'ev, *Pure Appl. Chem.*, **36**, 19 (1973). (30) G. N. Ramachandran and V. Sasikekharan, *Adv. Protein Chem.*, **23**, 283
- (1968).
- (31) (a) I. L. Karle, J. Karle, Th. Wieland, W. Burgermeister, H. Faulstich, and B. Witkop, Proc. Natl. Acad. Sci. U.S.A., 70, 1836 (1973); (b) D. J. Patel, Biochemistry, 12, 667 (1973).
- (32) (a) M. M. Shemyakin, Yu. A. Ovchinnokov, V. T. Ivanov, V. K. Antonov, A. M. Shkrob, I. I. Mikhaleva, A. V. Evstratov, and G. G. Malenkov, *Biochem.* Biophys. Res. Commun., 29, 834 (1967); (b) M. Ohnishi and D. W. Urry, ibid., 36, 194 (1969).

Crystal Structure and Conformation of *cyclo*-(Glycylprolylglycyl-D-alanylprolyl) Containing $4 \rightarrow 1$ and $3 \rightarrow 1$ Intramolecular Hydrogen Bonds

Isabella L. Karle

Contribution from the Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, D.C. 20375. Received July 30, 1977

Abstract: cyclo-(Gly1-Pro2-Gly3-D-Ala4-Pro5), a synthetic pentapeptide, contains two transannular C=O...HN bonds; one is the familiar $4 \rightarrow 1$ (type II) bond encompassing Pro₂-Gly₃ and the other is the recently encountered $3 \rightarrow 1$ bond encompassing Pros. All the peptide units are in the trans conformation with essentially planar amide linkages except for Pros where $\omega_5 =$ -160° . Conformational angles for the $4 \rightarrow 1$ bond are: $\phi_2 = -52^\circ$, $\psi_2 = 126^\circ$, $\phi_3 = 74^\circ$, and $\psi_3 = 12^\circ$. For the $3 \rightarrow 1$ bond they are $\phi_5 = -86^\circ$ and $\psi_5 = 70^\circ$. The space group is $P2_12_12_1$ with a = 10.254 (2) Å, b = 21.320 (5) Å, c = 8.565 (1) Å, and Z = 10.254 (2) Å, b = 21.320 (5) Å, c = 8.565 (1) Å, b = 21.320 (5) Å, c = 8.565 (1) Å, b = 21.320 (5) Å, c = 8.565 (1) Å, b = 21.320 (5) Å, c = 8.565 (1) Å, b = 21.320 (2) Å, b = 21.320 (3) Å, c = 8.565 (1) Å, c = 8.565 4. The structure was solved by direct phase determination.

The folds in peptide chains are often stabilized by the formation of intramolecular hydrogen bonds. Cyclic peptides are constrained to contain bends in the backbone and offer good models for studying the various possible types of bends containing intramolecular hydrogen bonds and for establishing the molecular dimensions and conformational angles for such bends. Thus far, $3 \rightarrow 1$, $4 \rightarrow 1$ (three types), and $5 \rightarrow 1$ (two types) bonds have been observed in crystalline cyclic peptides^{1,2} (Figure 1). The 3 \rightarrow 1 and 4 \rightarrow 1 bonds are also known as γ bends and β bends, respectively.

The present paper concerns the crystal structure and conformation of the cyclopentapeptide cyclo-(Gly-Pro-Gly-D-Ala-Pro) synthesized by Pease and Watson.³ It is the first example of a cyclic peptide containing both a $3 \rightarrow 1$ and a $4 \rightarrow 1$

Figure 1. Intramolecular $N_n H \rightarrow O_1 = C$ hydrogen bonds where n = 3, 4, 5. In the case of $n = 3, C_{n-1}^{\alpha}$ is the same atom as C_2^{α} .

Table I. Crystallographic Data for cyclo-(Gly-Pro-Gly-D-Ala-Pro)

Mol formula	C17H25N5O5
Mol weight	379.4
Color	Colorless
Habit	Tabular
Size, mm	$0.28 \times 0.10 \times 0.40$
Space group	P212121
a, Å	10.254 ± 0.002
b, Å	21.320 ± 0.005
c, Å	8.565 ± 0.001
Volume, Å ³	1872.4
Z	4
Density (calcd), g/cm ³	1.346
Radiation	Cu Ka
Wavelength, Å	1.54178
No. of independent reflections	1759

hydrogen bond to be studied by x-ray diffraction. Similar transannular hydrogen bonding has been proposed for *cyclo*-(Pro-Phe-Gly-Phe-Gly) in solution from NMR studies.⁴

Experimental Section

Crystals of *cyclo*-(Gly-Pro-Gly-D-Ala-Pro) grown from methanol/ether solution were stable in the dry state. X-ray intensity data were collected with the θ -2 θ scan technique on a four-circle automatic diffractometer using a scan of 2.0° + $2\theta(\alpha_2) - 2\theta(\alpha_1)$ with a scan

Table II. Fractional Coordinates and Thermal Parameters^a

Figure 2. Conformational angles and hydrogen bond lengths for the $4 \rightarrow 1$ bond, type II (upper transannular bond), and for the $3 \rightarrow 1$ bond (lower transannular bond).

Figure 3. Stereodrawing of *cyclo*-(Gly-Pro-Gly-D-Ala-Pro). The thermal ellipsoids for the C, N, and O atoms are drawn at the 50% probability level. Hydrogen atoms are indicated by small spheres, hydrogen bonds are indicated by the thin lines, and the numbered atoms represent the C_n^{α} .

Atom	x	y	Z	<i>B</i> ₁₁	B ₂₂	B 33	B ₁₂	<i>B</i> ₁₃	<i>B</i> ₂₃
N ₁	0.6237	0.3007	0.2931	5.57	3.97	6.25	0.89	-1.99	1.22
	0.7061	0.3477	0.3606	4.24	5.96	6.70	1.30	-1.66	0.25
Cĩ C1	0.6254	0.4086	0.3763	4.03	5.03	3.32	0.45	-0.87	-0.58
$\dot{O_1}$	0.5133	0.4052	0.4265	2.72	5.47	4.80	-0.28	-0.13	1.11
N_2	0.6780	0.4624	0.3320	2.42	4.85	2.71	0.11	-0.03	0.05
C ⁹	0.6020	0.5208	0.3294	3.27	5.22	3.24	-0.57	-0.07	-0.29
$\begin{array}{c} C_2^{lpha} \\ C_2^{\prime} \end{array}$	0.4743	0.5116	0.2364	3.67	3.32	3.47	-0.15	-0.10	0.44
$\overline{O_2}$	0.4730	0.4928	0.1028	3.93	7.23	2.51	0.87	-0.15	-0.78
CŜ	0.6923	0.5684	0.2511	4.39	6.03	5.91	-1.58	-0.47	0.82
$ \begin{array}{c} O_2\\ C_2\\ C_2\\ C_2\\ C_2\\ N_3 \end{array} $	0.8283	0.5423	0.2888	3.93	7.88	5.00	-1.85	0.32	1.06
C	0.8139	0.4722	0.2723	2.74	8.70	3.94	0.15	0.61	0.55
N ₃	0.3665	0.5274	0.3169	2.75	3.58	2.97	0.27	-0.15	-0.87
C ³ C'3	0.2392	0.5205	0.2440	3.62	4.25	3.75	0.84	-0.44	-0.76
C'_3	0.1899	0.4534	0.2282	2.59	4.54	2.32	0.63	0.40	0.12
0 ₃	0.0939	0.4436	0.1438	2.49	5.49	3.32	-0.05	-0.46	0.65
N ₄	0.2521	0.4080	0.3049	2.74	3.75	3.06	0.03	-0.32	0.08
C^{α}_{4}	0.2034	0.3435	0.2997	3.60	4.09	3.82	-0.73	-0.36	1.05
$\begin{array}{c} C_4^{lpha} \\ C_4^{\prime} \end{array}$	0.3178	0.2991	0.2683	4.61	3.37	5.11	-0.59	-0.66	0.65
O₄	0.3579	0.2627	0.3703	6.34	4.88	6.69	0.03	-0.90	3.01
$\begin{array}{c} {\rm O}_4 \\ {\rm C}_4^{\beta} \end{array}$	0.1326	0.3289	0.4525	5.33	9.17	4.44	-1.74	0.74	1.72
N ₅	0.3707	0.3027	0.1269	4.12	3.44	4.54	0.41	-0.67	-0.20
Cŝ	0.4856	0.2634	0.0826	4.87	3.98	7.06	0.84	-1.07	-0.80
C_5'	0.6083	0.2989	0.1348	4.63	4.66	6.64	1.72	-0.70	0.09
05	0.6810	0.3259	0.0439	4.81	9.80	7.02	-0.18	-0.27	0.04
C_5^β	0.4748	0.2594	-0.0941	6.28	6.23	7.28	1.26	0.38	-2.66
N 5 C 5 O 5 C	0.4051	0.3183	-0.1465	6.14	6.96	5.10	1.51	1.31	-0.86
Cš	0.3276	0.3418	-0.0051	5.71	5.43	4.36	0.82	-0.14	-0.25

^a The thermal parameters are of the form: $T = \exp[-\frac{1}{4}(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*).$

Atom	<i>x</i>	y	Z	Atom	<i>x</i>	у	Z
HN ₁	0.5764	0.2696	0.3660	HN₄	0.3319	0.4180	0.3665
H ₁ C ₁	0.7366	0.3329	0.4651	HC_4^{α}	0.1370	0.3389	0.2129
$H_2C_1^{\alpha}$	0.7811	0.3538	0.2896	$H_1C_4^\beta$	0.1944	0.3326	0.5416
HC_2^{α}	0.5813	0.5340	0.4390	$H_2C_4^{\dot{\beta}}$	0.0983	0.2842	0.4490
$H_1\tilde{C}_2^{g}$	0.6772	0.6107	0.2956	$H_{3}C_{4}^{\dot{\beta}}$	0.0573	0.3578	0.4676
$H_1 \tilde{C}_2^\beta$ $H_2 C_2^\beta$	0.6738	0.5688	0.1361	HCg	0.4827	0.2214	0.1377
H ₁ C ₂	0.8562	0.5553	0.3963	H₁Čβ	0.4305	0.2203	-0.1280
H ₂ C ₃	0.8947	0.5595	0.2117	$H_2C_5^8$	0.5679	0.2586	-0.1420
$H_2C_2^{\gamma}$ $H_1C_2^{\delta}$	0.8825	0.4505	0.3402	H ₁ C ₃	0.3412	0.3079	-0.2345
$H_2C_2^{\delta}$	0.8277	0.4591	0.1624	H ₂ C ₃	0.4658	0.3513	-0.1848
HN_3	0.3743	0.5436	0.4266	H ₁ C [§]	0.2318	0.3380	-0.0269
H ₁ C ₃	0.1741	0.5451	0.3123	$H_2C_5^{\delta}$	0.3484	0.3881	0.0095
$H_2C_3^{\alpha}$	0.2418	0.5411	0.1400				

Table III. Calculated Fractional Coordinates for the Hydrogen Atoms

Table IV. Bond Lengths (Angstroms) and Angles (Degrees)^a

		i					
	Gly1	Pro ₂	Gly ₃	D-Ala ₄	Pro ₅	Av	
Bonds							
$ \begin{array}{c} & \text{Distance} \\ & \text{Distance} \\ & \text{Ci}_{i}^{-}\text{Ci}_{i}^{-} \\ & \text{Ci}_{i}^{-} \\ &$	1.433	1.468	1.454	1.462	1.494	1.462	
$\mathbf{C}_{i}^{\alpha}-\mathbf{C}_{i}^{\prime}$	1.546	1.545	1.522	1.532	1.535	1.536	
$\mathbf{C}_{i}^{\prime} - \mathbf{O}_{i}^{\prime}$	1.230	1.212	1.240	1.238	1.223	1.229	
$C'_{i} N_{i+1}$	1.323	1.346	1.333	1.330	1.365	1.339	
$C_i^{\alpha} - C_i^{\beta}$		1.523		1.529	1.520	1.524	
$C_{i}^{\beta}-C_{i}^{\gamma}$		1.536			1.512		
$C\gamma - C_{l}^{\delta}$		1.508			1.533		
$C_i^{\delta} - N_i$		1.499			1.473		
Angles							
$C_{i-1}N_iC_i^{\alpha}$	119.2	121.5	119.5	120.3	121.4	120.4	
N _i C ^o C'i	107.9	110.5	115.6	108.9	107.2	110.0	
$C_i^{\alpha}C_i^{\prime}N_{i+1}$	119.0	113.6	118.7	116.9	113.5	116.3	
$C_i^{\alpha}C_i^{\prime}O_i$	118.8	122.5	118.3	121.2	123.3	120.8	
$N_{i+1}C_iO_i$	122.2	123.9	123.0	122.9	123.3	123.1	
C'C°C°		111.8		112.8	112.2	112.3	
$N_i C_i^{\alpha} C_i^{\beta}$		104.3		109.9	103.1		
CĩCĩCγ		102.5			106.5		
$\begin{array}{l} \text{Angles} \\ \text{C}_{i-1} \text{N}_i \text{C}_i^a \\ \text{C}_i^a \text{C}_i \\ \text{C}_i^a \text{C}_i^a \\ \text{C}_i^a \text{C}_i^a \\ \text{C}_i^a \text{C}_i^a \\ \text{N}_{i+1} \text{C}_i^a \text{C}_i^a \\ \text{C}_i^a \text{C}_i^a \\ \text{C}_i^a \text{C}_i^a \\ \text{C}_i^a \text{C}_i^a \\ \text{C}_i^a$		1.04.5			106.4		
C ⁷ C ⁸ N _i		101.3			105.4		
$C_i^{\delta} N_i C_i^{\alpha}$		111.8			111.0		
C ² C ² N _i C ² N _i C ² C ² N _i C ² _{i-1}		126.6			127.6		

^a Standard deviations are of the order of 0.006 Å for bond lengths and 0.3° for bond angles in the peptide ring and increase to 0.010 Å and 0.6° for the side groups.

Table V. Conformational Angles (Degrees)^a

Angle	Gly1	Pro ₂	Gly ₃	D-Ala4	Pro ₅
$\phi_i(\mathbf{N}_i - \mathbf{C}_j^{\alpha})$	83	-52	74	134	-86
$\psi_i(C_i^{\alpha}-C_i)$	-134	126	12	-69	70
$\omega_i(\mathbf{C}_{i} - \mathbf{N}_{i+1})$	174	-179	177	178	-160
Xil		-27			28
Xi2		39			-23
Xi3		-36			9
Xi4		19			9
$C_i^{\delta} N_i C_i^{\alpha} C_i^{\beta}$		5			-23

^a The convention followed for labeling atoms and conformational angles is that proposed by the IUPAC-IUB Commission on Biochemical Nomenclature, *Biochemistry*, 9, 3471 (1970). In the fully extended chain $\phi_i = \psi_i = \omega_i = 180^\circ$.

speed of 2°/min. Data were collected with Cu K α radiation to a maximum value of $2\theta = 126^\circ$. Lorentz and polarization corrections were made and normalized structure factors, $|E_h|$, were derived with the aid of a K curve. The cell parameters and other pertinent data are listed in Table 1.

The structure of the crystal was solved by the direct method⁵ of

phase determination using symbolic addition. It was also solved independently by a new automated procedure⁶ for phase determination. Full-matrix least-squares refinement on the 27 heavy atoms, with weighting based on counting statistics, led to an R factor of 13.5% for isotropic thermal factors and 10.6% for anisotropic thermal factors. The inclusion of 25 hydrogen atoms into the least-squares refinement, with the parameters for the hydrogen atoms held constant, resulted in an R factor of 7.2% for the 1554 measured data greater than σ .

The labeling of the atoms is shown in Figure 2 and the coordinates and anisotropic thermal factors for the C, N, and O atoms are listed in Table II. Coordinates for the 25 hydrogen atoms were derived from difference maps. The coordinates were not refined and some of the bond lengths and angles involving hydrogen atoms deviated from ideal values. The coordinates listed in Table III are values calculated for idealized hydrogen positions near the observed values. Bond lengths and bond angles are listed in Table IV while the conformational angles are shown in Table V.

Results

The Molecule. The cyclic backbone in *cyclo*-(Gly-Pro-Gly-D-Ala-Pro) contains all-trans peptide units. The molecule has an L shape with residues 1 through 4 roughly in one plane and residue 5 approximately perpendicular to that plane. A stereodiagram of the molecule, with hydrogen atoms included,

		Residue F	Residue		Degrees				
Bond	Peptide	(n = 2)	(n = 3)	ϕ_2	ψ_2	ϕ_3	ψ_3	Å	Ref
	Cyclic pentapeptide	L-Pro	Gly	-52	126	74	12	2.87	This paper
	Ferrichrome A	L-Ser	Gly	-57	132	82	-1	2.98	.7.
4 → 1	Linear tripeptide	L-Leu	Gly	-61	128	72		3.04	8
type II	Linear tripeptide	L-Pro	D-Lac	-62	140	91	-8	2.97	9
	Valinomycin	∫ L-Val	D-Hyv	-63	129	96	-3	3.07	10
	`	l L-Val	D-Hyv	-67	130	82	3	2.90	
			Residue		Degrees	S		NO,	
	Peptide		(n = 2)	ϕ		ω		Å	Ref
	∫Cyclic pentapeptide		L-Pro	-86	70	-160		2.92	This paper
3→1	Dihydrochlamydocin		D-Pro	+83	-73	+156		2.94)	11
	· ·		Me ₂ Gly	+72	-64	+162		2.82	

Table VI. Transannular Hydrogen Bonds^a

^a The numbering of the residues (n) is consistent with the diagram in Figure 1.

Figure 4. Stereodrawing of the crystal packing. Intermolecular hydrogen bonds between O_3 and N_3H of a molecule related by a twofold screw parallel to the c axis are indicated by thin lines. The axial directions are: $c, \uparrow; b, \rightarrow;$ and a, up from the plane of the page.

is shown in Figure 3. Two approximately parallel hydrogen bonds across the backbone ring, N₄H···O₁ and N₁H···O₄, as well as the two prolyl residues contribute to the rigidity of the conformation. A measure of the rigidity is reflected by the relatively small thermal elliposids associated with the backbone atoms (see Figure 3 and Table II).

The transannular hydrogen bonds are indicated more clearly in Figure 2. The $4 \rightarrow 1$ bond that makes the β bend is the type II¹² that has been observed to occur with L and D or L and Gly residues at the C_2^{α} and C_3^{α} positions. In Table VI there is a comparison of ϕ_2, ψ_2 and ϕ_3, ψ_3 values observed in type II 4-1 bonds in other crystalline peptides and depsipeptides, as well as the N…O distance in the hydrogen bond. The values for the conformational angles are similar in all cases, apparently largely independent of the nature of the side chains at the corners of the β bend, while the N···O distance varies from 2.87 Å (this compound) to 3.07 Å (valinomycin).

The $3 \rightarrow 1$ bond forming the γ bend has been observed in only one other crystal of a small peptide, the naturally occurring cyclic tetrapeptide dihydrochlamydocin.¹¹ The magnitudes for the conformational angles are nearly the same in all three examples listed in Table VI but the signs are reversed in dihydrochlamydocin since the γ bends in that molecule contain D-Pro and $(CH_3)_2$ Gly that behaves as if it were D. An interesting feature is the large deviation from planarity of the amide bond in the second peptide unit of the $3 \rightarrow 1$ bond. In the three γ bends listed in Table VI, the ω values deviate from 180° by 18-24° whereas the average deviation from 180° for ω in the remaining amide bonds in cyclo-(Gly-Pro-Gly-D-Ala-Pro) is only 3°. The rotation about the amide bond in the γ bend is in the direction to bring the proton in the $3 \rightarrow 1$ bond closer to the O atom. The H····O₄ separation is 2.25 Å and the N_1H ···O₄ angle is ~121°. For the $4\rightarrow 1$ bond, the H…O₁ separation is 1.85 Å while the N_4H ... O_1 angle is 153°.

Pyrrolidine rings in prolyl residues have assumed a number of different conformations in the crystals of the various peptides studied by x-ray diffraction. In this molecule, in Pro2 the pyrrolidine ring is in the envelope conformation with C_2^{γ} out of the plane of the other four atoms by 0.58 Å. The pyrrolidine ring in Pro₅, on the other hand, has a boat conformation with

 C_5^{β} 0.58 Å and C² 0.24 Å both below the plane of the other three atoms. The conformation of Pro5 is quite comparable to the conformation of Pro in dihydrochlamydocin¹¹ where the Pro residues in both compounds are contained in γ bends. In dihydrochlamydocin, C^{β} and C^{γ} are both on the same side of the plane formed by $C^{\alpha}NC^{\delta}$ with a deviation of 0.61 Å for C^{β} and 0.21 Å for C^{β} .

The packing in the crystal lattice, shown in Figure 4, is characterized by infinite chains formed by molecules connected by hydrogen bonds between O₃ of one molecule and N₃ of a molecule related by a twofold screw parallel to the c axis. The $N_3 \cdots O_3$ distance is 2.90 Å. There are no other NH groups available for intermolecular hydrogen bonding. Other than the N_3H ... O_3 intermolecular bond, the approaches between molecules are van der Waals contacts. The closest approaches are: $O_3 \cdots C_2^{\delta}$ (at x - 1, y, z), 3.13 Å; $O_3 \cdots C_2^{\alpha}$ (at $\frac{1}{2} - x, 1 - y, -\frac{1}{2} + z$), 3.44 Å; and $O_2 \cdots C_2^{\alpha}$ (at $\frac{1}{2} - x, 1 - y, -\frac{1}{2} + z$), 3.46 Å.

A comparison of the crystal-structure results with the conformation for the same molecule in solution deduced from NMR data is discussed in the adjoining paper.³

Supplementary Material Available: Listings of observed and calculated structure factors (8 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) I. L. Karle, Chem. Biol. Pept., Proc. Am. Pept. Symp., 61-84 (1975), and references therein.
- I. L. Karle, J. Karle, Th. Wieland, W. Burgermeister and B. Witkop, Proc. Natl. Acad. Sci. U.S.A., 73, 1782–1785 (1976). (2)
- (3)L. Pease and C. Watson, J. Am. Chem. Soc., preceding paper in this issue (1978). (4) D. Demel and H. Kessler, *Tetrahedron Lett.*, 2801 (1976).
- (5)
- J. Karle and I. L. Karle, Acta Crystallogr., 21, 849–859 (1966).
 J. Karle, R. D. Gilardi and S. H. Brenner, manuscript in preparation.
- (7)A. Zalkin, J. D. Forrester, and D. H. Templeton, J. Am. Chem. Soc., 88, 1810-1814 (1966)
- (8) L. L. Reed and P. L. Johnson, J. Am. Chem. Soc., 95, 7523-7524 (1973).
- (9)C. Lecomte, A. Aubry, and J. Protas, Acta Crystallogr., Sect. B, 30, 2343-2348 (1974). (10) I. L. Karle, *J. Am. Chem. Soc.*, **9**7, 4379-4386 (1975).
- (11) J. L. Flippen and I. L. Karle, Biopolymers, 15, 1081-1092 (1976).
- (12) C. M. Venkatachalam, Biopolymers, 6, 1425-1436 (1968).